language:
- multilingual
- ar
- as
- br
- ca
- cnh
- cs
- cv
- cy
- de
- dv
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- hi
- hsb
- hu
- ia
- id
- ja
- ka
- ky
- lg
- lt
- ly
- mn
- mt
- nl
- or
- pl
- pt
- ro
- ru
- sah
- sl
- ta
- th
- tr
- tt
- uk
- vi
license: apache-2.0
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
- robust-speech-event
- speech
- xlsr-fine-tuning-week
datasets:
- common_voice
language_bcp47:
- fy-NL
- ga-IE
- pa-IN
- rm-sursilv
- rm-vallader
- sy-SE
- zh-CN
- zh-HK
- zh-TW
model-index:
- name: XLSR Wav2Vec2 for 56 language by Voidful
results:
- task:
type: automatic-speech-recognition
name: Speech Recognition
dataset:
name: Common Voice
type: common_voice
metrics:
- type: cer
value: 23.21
name: Test CER
Model Card for wav2vec2-xlsr-multilingual-56
Model Details
Model Description
- Developed by: voidful
- Shared by [Optional]: Hugging Face
- Model type: automatic-speech-recognition
- Language(s) (NLP): multilingual (56 language, 1 model Multilingual ASR)
- License: Apache-2.0
- Related Models:
- Parent Model: wav2vec
- Resources for more information:
Uses
Direct Use
This model can be used for the task of automatic-speech-recognition
Downstream Use [Optional]
More information needed
Out-of-Scope Use
The model should not be used to intentionally create hostile or alienating environments for people.
Bias, Risks, and Limitations
Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
Training Details
Training Data
See the common_voice dataset card Fine-tuned facebook/wav2vec2-large-xlsr-53 on 56 language using the Common Voice.
Training Procedure
Preprocessing
More information needed
Speeds, Sizes, Times
When using this model, make sure that your speech input is sampled at 16kHz.
Evaluation
Testing Data, Factors & Metrics
Testing Data
More information needed
Factors
Metrics
More information needed
Results
Click to expand
Common Voice Languages | Num. of data | Hour | WER | CER |
---|---|---|---|---|
ar | 21744 | 81.5 | 75.29 | 31.23 |
as | 394 | 1.1 | 95.37 | 46.05 |
br | 4777 | 7.4 | 93.79 | 41.16 |
ca | 301308 | 692.8 | 24.80 | 10.39 |
cnh | 1563 | 2.4 | 68.11 | 23.10 |
cs | 9773 | 39.5 | 67.86 | 12.57 |
cv | 1749 | 5.9 | 95.43 | 34.03 |
cy | 11615 | 106.7 | 67.03 | 23.97 |
de | 262113 | 822.8 | 27.03 | 6.50 |
dv | 4757 | 18.6 | 92.16 | 30.15 |
el | 3717 | 11.1 | 94.48 | 58.67 |
en | 580501 | 1763.6 | 34.87 | 14.84 |
eo | 28574 | 162.3 | 37.77 | 6.23 |
es | 176902 | 337.7 | 19.63 | 5.41 |
et | 5473 | 35.9 | 86.87 | 20.79 |
eu | 12677 | 90.2 | 44.80 | 7.32 |
fa | 12806 | 290.6 | 53.81 | 15.09 |
fi | 875 | 2.6 | 93.78 | 27.57 |
fr | 314745 | 664.1 | 33.16 | 13.94 |
fy-NL | 6717 | 27.2 | 72.54 | 26.58 |
ga-IE | 1038 | 3.5 | 92.57 | 51.02 |
hi | 292 | 2.0 | 90.95 | 57.43 |
hsb | 980 | 2.3 | 89.44 | 27.19 |
hu | 4782 | 9.3 | 97.15 | 36.75 |
ia | 5078 | 10.4 | 52.00 | 11.35 |
id | 3965 | 9.9 | 82.50 | 22.82 |
it | 70943 | 178.0 | 39.09 | 8.72 |
ja | 1308 | 8.2 | 99.21 | 62.06 |
ka | 1585 | 4.0 | 90.53 | 18.57 |
ky | 3466 | 12.2 | 76.53 | 19.80 |
lg | 1634 | 17.1 | 98.95 | 43.84 |
lt | 1175 | 3.9 | 92.61 | 26.81 |
lv | 4554 | 6.3 | 90.34 | 30.81 |
mn | 4020 | 11.6 | 82.68 | 30.14 |
mt | 3552 | 7.8 | 84.18 | 22.96 |
nl | 14398 | 71.8 | 57.18 | 19.01 |
or | 517 | 0.9 | 90.93 | 27.34 |
pa-IN | 255 | 0.8 | 87.95 | 42.03 |
pl | 12621 | 112.0 | 56.14 | 12.06 |
pt | 11106 | 61.3 | 53.24 | 16.32 |
rm-sursilv | 2589 | 5.9 | 78.17 | 23.31 |
rm-vallader | 931 | 2.3 | 73.67 | 21.76 |
ro | 4257 | 8.7 | 83.84 | 21.95 |
ru | 23444 | 119.1 | 61.83 | 15.18 |
sah | 1847 | 4.4 | 94.38 | 38.46 |
sl | 2594 | 6.7 | 84.21 | 20.54 |
sv-SE | 4350 | 20.8 | 83.68 | 30.79 |
ta | 3788 | 18.4 | 84.19 | 21.60 |
th | 4839 | 11.7 | 141.87 | 37.16 |
tr | 3478 | 22.3 | 66.77 | 15.55 |
tt | 13338 | 26.7 | 86.80 | 33.57 |
uk | 7271 | 39.4 | 70.23 | 14.34 |
vi | 421 | 1.7 | 96.06 | 66.25 |
zh-CN | 27284 | 58.7 | 89.67 | 23.96 |
zh-HK | 12678 | 92.1 | 81.77 | 18.82 |
zh-TW | 6402 | 56.6 | 85.08 | 29.07 |
More information needed
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: More information needed
- Hours used: More information needed
- Cloud Provider: More information needed
- Compute Region: More information needed
- Carbon Emitted: More information needed
Technical Specifications [optional]
Model Architecture and Objective
More information needed
Compute Infrastructure
More information needed
Hardware
More information needed
Software
More information needed
Citation
BibTeX:
More information needed
APA:
More information needed
Glossary [optional]
More information needed
More Information [optional]
More information needed
Model Card Authors [optional]
voidful in collaboration with Ezi Ozoani and the Hugging Face team
Model Card Contact
More information needed
How to Get Started with the Model
Use the code below to get started with the model.
Click to expand
Env setup:
!pip install torchaudio
!pip install datasets transformers
!pip install asrp
!wget -O lang_ids.pk https://huggingface.co/voidful/wav2vec2-xlsr-multilingual-56/raw/main/lang_ids.pk
Usage
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
AutoTokenizer,
AutoModelWithLMHead
)
import torch
import re
import sys
import soundfile as sf
model_name = "voidful/wav2vec2-xlsr-multilingual-56"
device = "cuda"
processor_name = "voidful/wav2vec2-xlsr-multilingual-56"
import pickle
with open("lang_ids.pk", 'rb') as output:
lang_ids = pickle.load(output)
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(processor_name)
model.eval()
def load_file_to_data(file,sampling_rate=16_000):
batch = {}
speech, _ = torchaudio.load(file)
if sampling_rate != '16_000' or sampling_rate != '16000':
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16_000)
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
else:
batch["speech"] = speech.squeeze(0).numpy()
batch["sampling_rate"] = '16000'
return batch
def predict(data):
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
decoded_results = []
for logit in logits:
pred_ids = torch.argmax(logit, dim=-1)
mask = pred_ids.ge(1).unsqueeze(-1).expand(logit.size())
vocab_size = logit.size()[-1]
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
comb_pred_ids = torch.argmax(voice_prob, dim=-1)
decoded_results.append(processor.decode(comb_pred_ids))
return decoded_results
def predict_lang_specific(data,lang_code):
features = processor(data["speech"], sampling_rate=data["sampling_rate"], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
decoded_results = []
for logit in logits:
pred_ids = torch.argmax(logit, dim=-1)
mask = ~pred_ids.eq(processor.tokenizer.pad_token_id).unsqueeze(-1).expand(logit.size())
vocab_size = logit.size()[-1]
voice_prob = torch.nn.functional.softmax((torch.masked_select(logit, mask).view(-1,vocab_size)),dim=-1)
filtered_input = pred_ids[pred_ids!=processor.tokenizer.pad_token_id].view(1,-1).to(device)
if len(filtered_input[0]) == 0:
decoded_results.append("")
else:
lang_mask = torch.empty(voice_prob.shape[-1]).fill_(0)
lang_index = torch.tensor(sorted(lang_ids[lang_code]))
lang_mask.index_fill_(0, lang_index, 1)
lang_mask = lang_mask.to(device)
comb_pred_ids = torch.argmax(lang_mask*voice_prob, dim=-1)
decoded_results.append(processor.decode(comb_pred_ids))
return decoded_results
predict(load_file_to_data('audio file path',sampling_rate=16_000)) # beware of the audio file sampling rate
predict_lang_specific(load_file_to_data('audio file path',sampling_rate=16_000),'en') # beware of the audio file sampling rate
{{ get_started_code | default("More information needed", true)}}