bert-large-uncased-wnut_17

This model is a fine-tuned version of google-bert/bert-large-uncased on the wnut_17 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3198
  • Precision: 0.3458
  • Recall: 0.2308
  • F1: 0.2768
  • Accuracy: 0.9344

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 213 0.4550 1.0 0.0 0.0 0.9256
No log 2.0 426 0.4535 1.0 0.0 0.0 0.9256
0.5372 3.0 639 0.4368 1.0 0.0 0.0 0.9256
0.5372 4.0 852 0.3536 0.1268 0.0083 0.0157 0.9258
0.2367 5.0 1065 0.3517 0.2264 0.0621 0.0975 0.9267
0.2367 6.0 1278 0.3463 0.3471 0.1094 0.1663 0.9300
0.2367 7.0 1491 0.3320 0.3424 0.1640 0.2218 0.9319
0.1954 8.0 1704 0.3295 0.3436 0.1854 0.2408 0.9333
0.1954 9.0 1917 0.3201 0.3441 0.2261 0.2729 0.9343
0.1816 10.0 2130 0.3198 0.3458 0.2308 0.2768 0.9344

Framework versions

  • PEFT 0.12.1.dev0
  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for yefo-ufpe/bert-large-uncased-wnut_17

Adapter
(10)
this model

Dataset used to train yefo-ufpe/bert-large-uncased-wnut_17