|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
--- |
|
|
|
This model is for debugging. It is randomly initialized with the config from [deepseek-ai/DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3) but is of smaller size. |
|
|
|
**⚠️Note: At this moment, this repo does not contain the Multi-Token Prediction (MTP) module as explained [here](https://huggingface.co/deepseek-ai/DeepSeek-V3/blob/main/README_WEIGHTS.md).** |
|
|
|
Usage: |
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_id = "yujiepan/deepseek-v3-tiny-random" |
|
device = torch.device("cuda") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, trust_remote_code=True, |
|
).eval().to(device) |
|
|
|
prompt = 'Hello!' |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
inputs = tokenizer.apply_chat_template( |
|
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" |
|
).to(device) |
|
|
|
with torch.inference_mode(): |
|
outputs = model.generate( |
|
inputs, |
|
max_new_tokens=16, |
|
do_sample=False, |
|
use_cache=True, |
|
) |
|
string = tokenizer.decode(outputs[0]) |
|
print(string) |
|
``` |
|
|
|
Codes: |
|
```python |
|
import os |
|
from pathlib import Path |
|
|
|
import torch |
|
import transformers |
|
from huggingface_hub import create_repo, upload_folder |
|
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer, |
|
GenerationConfig, enable_full_determinism, pipeline, |
|
set_seed) |
|
|
|
model_id = "deepseek-ai/DeepSeek-V3" |
|
repo_id = "yujiepan/deepseek-v3-tiny-random" |
|
save_path = f"/tmp/{repo_id}" |
|
os.system(f"rm -rf {save_path}") |
|
|
|
config = AutoConfig.from_pretrained(model_id, trust_remote_code=True) |
|
config.num_hidden_layers = 2 |
|
config.first_k_dense_replace = 1 |
|
config.hidden_size = 16 |
|
config.intermediate_size = 32 |
|
config.moe_intermediate_size = 16 |
|
config.q_lora_rank = 16 |
|
config.kv_lora_rank = 16 |
|
config.qk_rope_head_dim = 16 |
|
config.qk_nope_head_dim = 16 |
|
config.v_head_dim = 16 |
|
config.num_attention_heads = 2 |
|
config.num_key_value_heads = 2 |
|
# transformers has not supported the customized quantization config |
|
del config.quantization_config |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
tokenizer.save_pretrained(save_path) |
|
|
|
enable_full_determinism(seed=42) |
|
model = AutoModelForCausalLM.from_config( |
|
config, torch_dtype=torch.bfloat16, trust_remote_code=True, |
|
).eval() |
|
|
|
try: |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
model_id, trust_remote_code=True) |
|
except: |
|
print("No generation config found") |
|
|
|
num_params = 0 |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
if 'experts' in name and 'experts.0.' not in name: # avoid printing too much |
|
pass |
|
else: |
|
print(name, p.shape) |
|
# torch.nn.init.uniform_(p, -0.2, 0.2) |
|
num_params += p.numel() |
|
print(f"Number of parameters: {num_params / 1e6:.2f}M") |
|
model.save_pretrained(save_path) |
|
|
|
# patch to use official modeling codes |
|
auto_map = config.auto_map |
|
import json |
|
with open(f"{save_path}/config.json", "r") as f: |
|
config = json.load(f) |
|
config['auto_map'] = auto_map |
|
with open(f"{save_path}/config.json", "w") as f: |
|
json.dump(config, f, indent=2) |
|
|
|
! cat {save_path}/config.json |
|
|
|
del model |
|
del tokenizer |
|
for p in Path(save_path).glob("*.py"): |
|
os.remove(p) |
|
|
|
os.system(f"ls -alh {save_path}") |
|
torch.use_deterministic_algorithms(False) |
|
tokenizer = AutoTokenizer.from_pretrained(save_path) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
save_path, trust_remote_code=True).eval() |
|
prompt = 'Hello!' |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."} |
|
] |
|
messages.append({"role": "user", "content": prompt}) |
|
tokenized_chat = tokenizer.apply_chat_template( |
|
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") |
|
|
|
device = torch.device("cuda") |
|
outputs = model.to(device).generate( |
|
tokenized_chat.to(device), |
|
max_new_tokens=16, |
|
do_sample=False, |
|
use_cache=True, |
|
) |
|
tokens = tokenizer.convert_ids_to_tokens(outputs[0]) |
|
string = tokenizer.decode(outputs[0]) |
|
print(tokens) |
|
|
|
|
|
# create_repo(repo_id, exist_ok=True) |
|
# upload_folder(repo_id=repo_id, folder_path=save_path) |
|
``` |
|
|