This model is for debugging. It is randomly initialized using the config from HuggingFaceTB/SmolLM-1.7B but with smaller size.

Codes:

from huggingface_hub import create_repo, upload_folder
from transformers import (
    pipeline,
    set_seed,
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
)
import torch
import transformers
import os

model_id = "HuggingFaceTB/SmolLM-1.7B"
repo_id = "yujiepan/smollm-tiny-random"
save_path = f"/tmp/{repo_id}"

config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
config._name_or_path = model_id
config.hidden_size = 8
config.intermediate_size = 16
config.num_attention_heads = 4
config.num_hidden_layers = 2
config.num_key_value_heads = 2
print(config)

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.save_pretrained(save_path)

model = AutoModelForCausalLM.from_config(
    config, torch_dtype=torch.bfloat16, attn_implementation="eager", trust_remote_code=True
)
model.generation_config = GenerationConfig.from_pretrained(model_id, trust_remote_code=True)

set_seed(42)
with torch.no_grad():
    for _, p in sorted(model.named_parameters()):
        torch.nn.init.uniform_(p, -0.1, 0.1)

model.save_pretrained(save_path)

pipe = pipeline("text-generation", model=save_path, device="cuda", trust_remote_code=True)
print(pipe("Hello World!"))

# messages = [
#     {"role": "system", "content": "You are a robot."},
#     {"role": "user", "content": "Hi!"},
# ]
# chatbot = pipeline("text-generation", model=save_path, max_length=1000, max_new_tokens=16, trust_remote_code=True)
# print(chatbot(messages))
Downloads last month
11
Safetensors
Model size
394k params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including yujiepan/smollm-tiny-random