3. 提供可下载文件

确保以下文件已上传到仓库,便于用户下载和运行: - 模型权重文件(如 AutoModel.pth)。 - 配置文件(如 config.json)。 - 依赖文件(如 requirements.txt)。 - 运行脚本(如 run_model.py)。

用户可以直接下载这些文件并运行模型。


4. 自动运行模型的限制

Hugging Face Hub 本身不能自动运行上传的模型,但通过 Spaces 提供的接口可以解决这一问题。Spaces 能够运行托管的推理服务,让用户无需本地配置即可测试模型。


推荐方法

  • 快速测试:使用 Hugging Face Spaces 创建在线演示。
  • 高级使用:在模型卡中提供完整的运行说明,允许用户本地运行模型。

通过这些方式,您可以让模型仓库既支持在线运行,也便于用户离线部署。

Uses

import torch
import torch.nn as nn
import torch.nn.functional as F
import os
# 配置类定义
class Config:
    def __init__(self):
        # 模型架构参数
        self.hidden_size = 768
        self.num_attention_heads = 12
        self.num_hidden_layers = 12
        self.intermediate_size = 3072
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1

        # 图像相关
        self.image_size = 224
        self.image_channels = 3
        self.patch_size = 16

        # 文本相关
        self.max_position_embeddings = 512
        self.vocab_size = 30522
        self.type_vocab_size = 2

        # 语音相关
        self.audio_sample_rate = 16000
        self.audio_frame_size = 1024
        self.audio_hop_size = 512

        # 任务相关
        self.enable_vqa = True
        self.enable_caption = True
        self.enable_retrieval = True
        self.enable_asr = True  # 语音识别
        self.enable_realtime_asr = True  # 实时语音识别

        # 训练相关
        self.batch_size = 32
        self.learning_rate = 1e-4
        self.weight_decay = 0.01
        self.warmup_steps = 10000
        self.max_steps = 100000

# 模型相关类定义
class ImageEncoder(nn.Module):
    def __init__(self, config):
        super(ImageEncoder, self).__init__()
        self.config = config
        self.encoder_layer = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Flatten(),
            nn.Linear(64 * 111 * 111, config.hidden_size)
        )

    def forward(self, image):
        image_features = self.encoder_layer(image)
        return image_features

class TextEncoder(nn.Module):
    def __init__(self, config):
        super(TextEncoder, self).__init__()
        self.config = config
        self.transformer_layer = nn.TransformerEncoderLayer(
            d_model=config.hidden_size, 
            nhead=config.num_attention_heads,
            batch_first=True
        )
        self.transformer_encoder = nn.TransformerEncoder(
            self.transformer_layer, 
            num_layers=config.num_hidden_layers
        )

    def forward(self, text):
        text_features = self.transformer_encoder(text).mean(dim=1)
        return text_features

class AudioEncoder(nn.Module):
    def __init__(self, config):
        super(AudioEncoder, self).__init__()
        self.config = config
        self.encoder_layer = nn.Sequential(
            nn.Linear(config.audio_sample_rate, config.hidden_size),
            nn.ReLU(),
            nn.Linear(config.hidden_size, config.hidden_size)
        )

    def forward(self, audio):
        audio_features = self.encoder_layer(audio)
        return audio_features

class FusionLayer(nn.Module):
    def __init__(self, config):
        super(FusionLayer, self).__init__()
        self.config = config
        self.fusion_layer = nn.Linear(config.hidden_size * 3, config.hidden_size)

    def forward(self, image_features, text_features, audio_features):
        fused_features = torch.cat((image_features, text_features, audio_features), dim=1)
        fused_features = self.fusion_layer(fused_features)
        return fused_features

class VQALayer(nn.Module):
    def __init__(self, config):
        super(VQALayer, self).__init__()
        self.config = config
        self.vqa_layer = nn.Linear(config.hidden_size, config.vocab_size)

    def forward(self, fused_features):
        vqa_output = self.vqa_layer(fused_features)
        return vqa_output

class CaptionLayer(nn.Module):
    def __init__(self, config):
        super(CaptionLayer, self).__init__()
        self.config = config
        self.caption_layer = nn.Linear(config.hidden_size, config.vocab_size)

    def forward(self, fused_features):
        caption_output = self.caption_layer(fused_features)
        return caption_output

class RetrievalLayer(nn.Module):
    def __init__(self, config):
        super(RetrievalLayer, self).__init__()
        self.config = config
        self.retrieval_layer = nn.Linear(config.hidden_size, config.vocab_size)

    def forward(self, fused_features):
        retrieval_output = self.retrieval_layer(fused_features)
        return retrieval_output

class ASRLayer(nn.Module):
    def __init__(self, config):
        super(ASRLayer, self).__init__()
        self.config = config
        self.asr_layer = nn.Linear(config.hidden_size, config.vocab_size)

    def forward(self, fused_features):
        asr_output = self.asr_layer(fused_features)
        return asr_output

class RealtimeASRLayer(nn.Module):
    def __init__(self, config):
        super(RealtimeASRLayer, self).__init__()
        self.config = config
        self.realtime_asr_layer = nn.Linear(config.hidden_size, config.vocab_size)

    def forward(self, fused_features):
        realtime_asr_output = self.realtime_asr_layer(fused_features)
        return realtime_asr_output

class TextOutputLayer(nn.Module):
    def __init__(self, config):
        super(TextOutputLayer, self).__init__()
        self.config = config
        self.text_output_layer = nn.Linear(config.hidden_size, config.vocab_size)

    def forward(self, fused_features):
        text_output = self.text_output_layer(fused_features)
        return text_output

# 主模型定义
class AutoModel(nn.Module):
    def __init__(self, config):
        super(AutoModel, self).__init__()
        self.config = config
        self.image_encoder = ImageEncoder(config)
        self.text_encoder = TextEncoder(config)
        self.audio_encoder = AudioEncoder(config)
        self.fusion_layer = FusionLayer(config)
        self.vqa_layer = VQALayer(config)
        self.caption_layer = CaptionLayer(config)
        self.retrieval_layer = RetrievalLayer(config)
        self.asr_layer = ASRLayer(config)
        self.realtime_asr_layer = RealtimeASRLayer(config)
        self.text_output_layer = TextOutputLayer(config)

    def forward(self, image, text, audio):
        image_features = self.image_encoder(image)
        text_features = self.text_encoder(text)
        audio_features = self.audio_encoder(audio)
        fused_features = self.fusion_layer(image_features, text_features, audio_features)
        vqa_output = self.vqa_layer(fused_features)
        caption_output = self.caption_layer(fused_features)
        retrieval_output = self.retrieval_layer(fused_features)
        asr_output = self.asr_layer(fused_features)
        realtime_asr_output = self.realtime_asr_layer(fused_features)
        text_output = self.text_output_layer(fused_features)
        return vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output, text_output

# 测试代码
config = Config()
model = AutoModel(config)
image = torch.randn(1, 3, 224, 224)
text = torch.randn(1, config.max_position_embeddings, config.hidden_size)
audio = torch.randn(1, config.audio_sample_rate)
vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output, text_output = model(image, text, audio)

# 输出结果
print("VQA output shape:", vqa_output.shape)
print("Caption output shape:", caption_output.shape)
print("Retrieval output shape:", retrieval_output.shape)
print("ASR output shape:", asr_output.shape)
print("Realtime ASR output shape:", realtime_asr_output.shape)
print("Text output shape:", text_output.shape)

# 打印总参数数量
total_params = sum(p.numel() for p in model.parameters())
print(f"\n总参数数量: {total_params}")



# 保存模型权重
save_path = "save.pth"
torch.save(model.state_dict(), save_path)
print(f"模型权重已保存到: {save_path}")

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
13
Inference API
Inference API (serverless) does not yet support zero models for this pipeline type.

Evaluation results