File size: 6,345 Bytes
9db11e8
 
 
 
 
6f44c08
9db11e8
 
 
 
 
06196f6
9db11e8
06196f6
9db11e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f44c08
1572e58
6f44c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9db11e8
658ed05
 
 
 
 
 
9db11e8
658ed05
6916e52
658ed05
6916e52
658ed05
 
6916e52
658ed05
6916e52
658ed05
 
 
6916e52
658ed05
6916e52
 
7724139
6916e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
---
language:
- en
- zh
license: apache-2.0
library_name: transformers
tags:
- multimodal
- vqa
- text
- audio
datasets:
- synthetic-dataset
metrics:
- accuracy
- bleu
- wer
model-index:
- name: AutoModel
  results:
  - task:
      type: vqa
      name: Visual Question Answering
    dataset:
      type: synthetic-dataset
      name: Synthetic Multimodal Dataset
      split: test
    metrics:
    - type: accuracy
      value: 85
pipeline_tag: question-answering
model_index:
- name: AutoModel
  results:
  - task:
      type: vqa
      name: Visual Question Answering
    dataset:
      type: synthetdataset
      name: Synthetic Multimodal Dataset
      config: default
      split: test
      revision: main
    metrics:
    - type: accuracy
      value: 85
      name: VQA Accuracy
  - task:
      type: automatspeerecognition
      name: Automatic Speech Recognition
    dataset:
      type: synthetdataset
      name: Synthetic Multimodal Dataset
      config: default
      split: test
      revision: main
    metrics:
    - type: wer
      value: 15.3
      name: Test WER
  - task:
      type: captioning
      name: Image Captioning
    dataset:
      type: synthetdataset
      name: Synthetic Multimodal Dataset
      config: default
      split: test
      revision: main
    metrics:
    - type: bleu
      value: 27.5
      name: BL4
---
### **3. 提供可下载文件**
确保以下文件已上传到仓库,便于用户下载和运行:
- **模型权重文件**(如 `AutoModel.pth`)。
- **配置文件**(如 `config.json`)。
- **依赖文件**(如 `requirements.txt`)。
- **运行脚本**(如 `run_model.py`)。
--
用户可以直接下载这些文件并运行模型。

---

### **4. 自动运行模型的限制**
Hugging Face Hub 本身不能自动运行上传的模型,但通过 `Spaces` 提供的接口可以解决这一问题。`Spaces` 能够运行托管的推理服务,让用户无需本地配置即可测试模型。

---

### **推荐方法**
- **快速测试**:使用 Hugging Face `Spaces` 创建在线演示。
- **高级使用**:在模型卡中提供完整的运行说明,允许用户本地运行模型。

通过这些方式,您可以让模型仓库既支持在线运行,也便于用户离线部署。

## Uses


### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]