|
--- |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v-bert-2.0-malayalam_mixeddataset_two.0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v-bert-2.0-malayalam_mixeddataset_two.0 |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1425 |
|
- Wer: 0.1451 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 1.9341 | 0.24 | 300 | 0.4363 | 0.5138 | |
|
| 0.228 | 0.47 | 600 | 0.3644 | 0.4847 | |
|
| 0.1828 | 0.71 | 900 | 0.2752 | 0.3807 | |
|
| 0.1479 | 0.95 | 1200 | 0.2671 | 0.3583 | |
|
| 0.1213 | 1.19 | 1500 | 0.2291 | 0.2861 | |
|
| 0.1114 | 1.42 | 1800 | 0.2098 | 0.2754 | |
|
| 0.1049 | 1.66 | 2100 | 0.2088 | 0.2832 | |
|
| 0.0962 | 1.9 | 2400 | 0.1789 | 0.2501 | |
|
| 0.0777 | 2.14 | 2700 | 0.1945 | 0.2371 | |
|
| 0.0685 | 2.37 | 3000 | 0.1788 | 0.2433 | |
|
| 0.0663 | 2.61 | 3300 | 0.1707 | 0.2264 | |
|
| 0.0652 | 2.85 | 3600 | 0.1834 | 0.2227 | |
|
| 0.0573 | 3.08 | 3900 | 0.1663 | 0.2065 | |
|
| 0.0445 | 3.32 | 4200 | 0.1479 | 0.1981 | |
|
| 0.0417 | 3.56 | 4500 | 0.1477 | 0.1779 | |
|
| 0.0415 | 3.8 | 4800 | 0.1504 | 0.1774 | |
|
| 0.0368 | 4.03 | 5100 | 0.1407 | 0.1655 | |
|
| 0.0248 | 4.27 | 5400 | 0.1568 | 0.1672 | |
|
| 0.0258 | 4.51 | 5700 | 0.1495 | 0.1582 | |
|
| 0.0227 | 4.74 | 6000 | 0.1460 | 0.1510 | |
|
| 0.0225 | 4.98 | 6300 | 0.1425 | 0.1451 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.1+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|