ENOT-AutoDL YOLOv8 optimization on VisDrone dataset
This repository contains models accelerated with ENOT-AutoDL framework. We trained yolov8s on VisDrone dataset and used it as our baseline. Also we provide simple python script to measure flops and metrics.
YOLOv8 Small
Model | GMACs | Image Size | mAP50 | mAP50-95 |
---|---|---|---|---|
YOLOv8 Ultralytics Baseline | 14,28 | 640 | 40,2 | 24,2 |
YOLOv8n Enot Baseline | 8,57 | 928 | 42,9 | 26,0 |
YOLOv8s Enot Baseline | 30,03 | 928 | 49,4 | 30,6 |
YOLOv8s (x2) | 15,01 (x2) | 928 | 48,3 (-1,1) | 29,8 (-0,8) |
YOLOv8s (x3) | 10,01 (x3) | 928 | 46,0 (-3,4) | 28,3 (-2,3) |
Validation
To validate results, follow this steps:
- Install all required packages:
pip install -r requrements.txt
- Use validation script:
python validate.py enot_neural_architecture_selection_x2/weights/best.pt --imgsz 928
- Use measure_macs script:
python measure_macs.py enot_neural_architecture_selection_x2/weights/best.pt --imgsz 928
- Downloads last month
- 2
Inference API (serverless) does not yet support ultralytics models for this pipeline type.
Evaluation results
- mAP50(baseline)self-reported49,4
- mAP50(GMACs x2)self-reported48,4
- mAP50(GMACs x3)self-reported46,0