ENOT-AutoDL YOLOv8 optimization on VisDrone dataset

This repository contains models accelerated with ENOT-AutoDL framework. We trained yolov8s on VisDrone dataset and used it as our baseline. Also we provide simple python script to measure flops and metrics.

YOLOv8 Small

Model GMACs Image Size mAP50 mAP50-95
YOLOv8 Ultralytics Baseline 14,28 640 40,2 24,2
YOLOv8n Enot Baseline 8,57 928 42,9 26,0
YOLOv8s Enot Baseline 30,03 928 49,4 30,6
YOLOv8s (x2) 15,01 (x2) 928 48,3 (-1,1) 29,8 (-0,8)
YOLOv8s (x3) 10,01 (x3) 928 46,0 (-3,4) 28,3 (-2,3)

Validation

To validate results, follow this steps:

  1. Install all required packages:
pip install -r requrements.txt
  1. Use validation script:
python validate.py enot_neural_architecture_selection_x2/weights/best.pt --imgsz 928
  1. Use measure_macs script:
python measure_macs.py enot_neural_architecture_selection_x2/weights/best.pt --imgsz 928
Downloads last month
2
Inference Examples
Inference API (serverless) does not yet support ultralytics models for this pipeline type.

Evaluation results