yolov8s_visdrone / README.md
andreysher's picture
Add dataset to model card and config.json
13f2711
metadata
license: apache-2.0
datasets:
  - visdrone
model-index:
  - name: ENOT-AutoDL/yolov8s_visdrone
    results:
      - task:
          type: object-detection
          dataset:
            type: visdrone
            name: visdrone
        metrics:
          - type: precision
            value: 49,4
            name: mAP50(baseline)
          - type: precision
            value: 48,4
            name: mAP50(GMACs x2)
          - type: precision
            value: 46,0
            name: mAP50(GMACs x3)
library_name: ultralytics
pipeline_tag: object-detection
tags:
  - yolov8
  - ENOT-AutoDL
  - yolo
  - vision
  - ultralytics
  - object-detection

ENOT-AutoDL YOLOv8 optimization on VisDrone dataset

This repository contains models accelerated with ENOT-AutoDL framework. We trained yolov8s on VisDrone dataset and used it as our baseline. Also we provide simple python script to measure flops and metrics.

YOLOv8 Small

Model GMACs Image Size mAP50 mAP50-95
YOLOv8 Ultralytics Baseline 14,28 640 40,2 24,2
YOLOv8n Enot Baseline 8,57 928 42,9 26,0
YOLOv8s Enot Baseline 30,03 928 49,4 30,6
YOLOv8s (x2) 15,01 (x2) 928 48,3 (-1,1) 29,8 (-0,8)
YOLOv8s (x3) 10,01 (x3) 928 46,0 (-3,4) 28,3 (-2,3)

Validation

To validate results, follow this steps:

  1. Install all required packages:
pip install -r requrements.txt
  1. Use validation script:
python validate.py enot_neural_architecture_selection_x2/weights/best.pt --imgsz 928
  1. Use measure_macs script:
python measure_macs.py enot_neural_architecture_selection_x2/weights/best.pt --imgsz 928