|
from typing import Dict, List, Any
|
|
import os
|
|
import torch
|
|
from transformers import AutoTokenizer, AutoModel
|
|
import pandas as pd
|
|
import time
|
|
import numpy as np
|
|
from transformers import GenerationConfig
|
|
from P3LIB.precious3_gpt_multi_modal import Custom_MPTForCausalLM
|
|
|
|
|
|
class EndpointHandler:
|
|
def __init__(self, path="insilicomedicine/precious3-gpt", device='cuda:1'):
|
|
|
|
self.device = device
|
|
self.model = AutoModel.from_pretrained(path, trust_remote_code=True).to(self.device)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
|
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
|
self.model.config.bos_token_id = self.tokenizer.bos_token_id
|
|
self.model.config.eos_token_id = self.tokenizer.eos_token_id
|
|
|
|
unique_entities_p3 = pd.read_csv(
|
|
'https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv')
|
|
self.unique_compounds_p3 = [i.strip() for i in
|
|
unique_entities_p3[unique_entities_p3.type == 'compound'].entity.to_list()]
|
|
self.unique_genes_p3 = [i.strip() for i in
|
|
unique_entities_p3[unique_entities_p3.type == 'gene'].entity.to_list()]
|
|
|
|
def create_prompt(self, prompt_config):
|
|
|
|
prompt = "[BOS]"
|
|
|
|
multi_modal_prefix = ''
|
|
|
|
for k, v in prompt_config.items():
|
|
if k == 'instruction':
|
|
prompt += f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v])
|
|
elif k == 'up':
|
|
if v:
|
|
prompt += f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v,
|
|
str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
|
elif k == 'down':
|
|
if v:
|
|
prompt += f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v,
|
|
str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
|
elif k == 'age':
|
|
if isinstance(v, int):
|
|
if prompt_config['species'].strip() == 'human':
|
|
prompt += f'<{k}_individ>{v} </{k}_individ>'
|
|
elif prompt_config['species'].strip() == 'macaque':
|
|
prompt += f'<{k}_individ>Macaca-{int(v / 20)} </{k}_individ>'
|
|
else:
|
|
if v:
|
|
prompt += f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
|
|
else:
|
|
prompt += f'<{k}></{k}>'
|
|
return prompt
|
|
|
|
def generate_with_generation_config(self, input_ids, generation_config, max_new_tokens, random_seed=138):
|
|
torch.manual_seed(random_seed)
|
|
|
|
with torch.no_grad():
|
|
generation_output = self.model.generate(
|
|
input_ids=input_ids,
|
|
generation_config=generation_config,
|
|
return_dict_in_generate=True,
|
|
output_scores=True,
|
|
max_new_tokens=max_new_tokens
|
|
)
|
|
return generation_output
|
|
|
|
def get_gene_probabilities(self, prompt_config, top_k=300, list_type='up', random_seed=138):
|
|
"""
|
|
Args:
|
|
top_k: how many top probable tokens to take
|
|
list_type: "up" / "down"
|
|
"""
|
|
prompt = self.create_prompt(prompt_config)
|
|
assert list_type in ["up", "down"]
|
|
|
|
if list_type == 'up':
|
|
prompt += "<up>"
|
|
|
|
print(prompt)
|
|
|
|
generation_config = GenerationConfig(temperature=0.8, num_beams=1, do_sample=True, top_p=None, top_k=3550,
|
|
pad_token_id=self.tokenizer.pad_token_id, num_return_sequences=1)
|
|
inputs = self.tokenizer(prompt, return_tensors="pt")
|
|
input_ids = inputs["input_ids"].to(self.device)
|
|
assert 3 not in input_ids[0]
|
|
max_new_tokens = self.model.config.max_seq_len - len(input_ids[0])
|
|
|
|
generation_output = self.generate_with_generation_config(input_ids=input_ids,
|
|
generation_config=generation_config,
|
|
max_new_tokens=max_new_tokens,
|
|
random_seed=random_seed)
|
|
|
|
id_4_gene_token = list(generation_output.sequences[0][len(input_ids[0]) - 1:]).index(
|
|
self.tokenizer.convert_tokens_to_ids([f'<{list_type}>'])[0])
|
|
id_4_gene_token += 1
|
|
print('This is token index where gene should be predicted: ', id_4_gene_token)
|
|
|
|
values, indices = torch.topk(generation_output["scores"][id_4_gene_token - 1].view(-1), k=top_k)
|
|
indices_decoded = self.tokenizer.decode(indices, skip_special_tokens=True)
|
|
indices_decoded_list = indices_decoded.split(' ')
|
|
|
|
generated_genes = sorted(set(indices_decoded_list) & set(self.unique_genes_p3), key=indices_decoded_list.index)
|
|
return generated_genes
|
|
|
|
|
|
class HFEndpointHandler:
|
|
def __init__(self, path="insilicomedicine/precious3-gpt", device='cuda:1'):
|
|
|
|
self.device = device
|
|
self.model = AutoModel.from_pretrained(path, trust_remote_code=True).to(self.device)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
|
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
|
self.model.config.bos_token_id = self.tokenizer.bos_token_id
|
|
self.model.config.eos_token_id = self.tokenizer.eos_token_id
|
|
|
|
unique_entities_p3 = pd.read_csv('https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv')
|
|
self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()]
|
|
self.unique_genes_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='gene'].entity.to_list()]
|
|
|
|
|
|
def create_prompt(self, prompt_config):
|
|
|
|
prompt = "[BOS]"
|
|
|
|
multi_modal_prefix = ''
|
|
|
|
for k, v in prompt_config.items():
|
|
if k=='instruction':
|
|
prompt+=f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v])
|
|
elif k=='up':
|
|
if v:
|
|
prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
|
elif k=='down':
|
|
if v:
|
|
prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
|
elif k=='age':
|
|
if isinstance(v, int):
|
|
if prompt_config['species'].strip() == 'human':
|
|
prompt+=f'<{k}_individ>{v} </{k}_individ>'
|
|
elif prompt_config['species'].strip() == 'macaque':
|
|
prompt+=f'<{k}_individ>Macaca-{int(v/20)} </{k}_individ>'
|
|
else:
|
|
if v:
|
|
prompt+=f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
|
|
else:
|
|
prompt+=f'<{k}></{k}>'
|
|
return prompt
|
|
|
|
def custom_generate(self,
|
|
input_ids,
|
|
device,
|
|
max_new_tokens,
|
|
mode,
|
|
temperature=0.8,
|
|
top_p=0.2, top_k=3550,
|
|
n_next_tokens=30, num_return_sequences=1, random_seed=138):
|
|
|
|
torch.manual_seed(random_seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
outputs = []
|
|
next_token_compounds = []
|
|
next_token_up_genes = []
|
|
next_token_down_genes = []
|
|
|
|
for _ in range(num_return_sequences):
|
|
start_time = time.time()
|
|
generated_sequence = []
|
|
current_token = input_ids.clone()
|
|
|
|
for _ in range(max_new_tokens):
|
|
|
|
logits = self.model.forward(
|
|
input_ids=current_token
|
|
)[0]
|
|
|
|
|
|
if temperature != 1.0:
|
|
logits = logits / temperature
|
|
|
|
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
|
sorted_indices_to_remove = cumulative_probs > top_p
|
|
|
|
if top_k > 0:
|
|
sorted_indices_to_remove[..., top_k:] = 1
|
|
|
|
|
|
inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)
|
|
|
|
logits = logits.where(sorted_indices_to_remove, inf_tensor)
|
|
|
|
|
|
if current_token[0][-1] == self.tokenizer.encode('<drug>')[0] and len(next_token_compounds)==0:
|
|
next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
|
|
|
|
|
|
if current_token[0][-1] == self.tokenizer.encode('<up>')[0] and len(next_token_up_genes)==0:
|
|
next_token_up_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
|
|
|
|
|
|
if current_token[0][-1] == self.tokenizer.encode('<down>')[0] and len(next_token_down_genes)==0:
|
|
next_token_down_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
|
|
|
|
next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0)
|
|
|
|
|
|
|
|
generated_sequence.append(next_token.item())
|
|
|
|
|
|
if next_token == self.tokenizer.eos_token_id:
|
|
break
|
|
|
|
|
|
current_token = torch.cat((current_token, next_token), dim=-1)
|
|
print(time.time()-start_time)
|
|
outputs.append(generated_sequence)
|
|
|
|
|
|
processed_outputs = {"up": [], "down": []}
|
|
if mode in ['meta2diff', 'meta2diff2compound']:
|
|
|
|
|
|
predicted_up_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_up_genes]
|
|
predicted_up_genes = []
|
|
for j in predicted_up_genes_tokens:
|
|
generated_up_sample = [i.strip() for i in j]
|
|
predicted_up_genes.append(sorted(set(generated_up_sample) & set(self.unique_genes_p3), key = generated_up_sample.index))
|
|
processed_outputs['up'] = predicted_up_genes
|
|
|
|
predicted_down_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_down_genes]
|
|
predicted_down_genes = []
|
|
for j in predicted_down_genes_tokens:
|
|
generated_down_sample = [i.strip() for i in j]
|
|
predicted_down_genes.append(sorted(set(generated_down_sample) & set(self.unique_genes_p3), key = generated_down_sample.index))
|
|
processed_outputs['down'] = predicted_down_genes
|
|
|
|
else:
|
|
processed_outputs = outputs
|
|
|
|
predicted_compounds_ids = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_compounds]
|
|
predicted_compounds = []
|
|
for j in predicted_compounds_ids:
|
|
predicted_compounds.append([i.strip() for i in j])
|
|
|
|
return processed_outputs, predicted_compounds, random_seed
|
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
|
"""
|
|
Args:
|
|
data (:dict:):
|
|
The payload with the text prompt and generation parameters.
|
|
"""
|
|
|
|
data = data.copy()
|
|
|
|
parameters = data.pop("parameters", None)
|
|
config_data = data.pop("inputs", None)
|
|
mode = data.pop('mode', 'Not specified')
|
|
|
|
prompt = self.create_prompt(config_data)
|
|
if mode != "diff2compound":
|
|
prompt+="<up>"
|
|
|
|
inputs = self.tokenizer(prompt, return_tensors="pt")
|
|
input_ids = inputs["input_ids"].to(self.device)
|
|
|
|
max_new_tokens = self.model.config.max_seq_len - len(input_ids[0])
|
|
try:
|
|
|
|
generated_sequence, raw_next_token_generation, out_seed = self.custom_generate(input_ids = input_ids,
|
|
max_new_tokens=max_new_tokens, mode=mode,
|
|
device=self.device, **parameters)
|
|
next_token_generation = [sorted(set(i) & set(self.unique_compounds_p3), key = i.index) for i in raw_next_token_generation]
|
|
|
|
if mode == "meta2diff":
|
|
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
|
|
out = {"output": outputs, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed}
|
|
elif mode == "meta2diff2compound":
|
|
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
|
|
out = {
|
|
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode,
|
|
"message": "Done!", "input": prompt, 'random_seed': out_seed}
|
|
elif mode == "diff2compound":
|
|
outputs = generated_sequence
|
|
out = {
|
|
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode,
|
|
"message": "Done!", "input": prompt, 'random_seed': out_seed}
|
|
else:
|
|
out = {"message": f"Specify one of the following modes: meta2diff, meta2diff2compound, diff2compound. Your mode is: {mode}"}
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
outputs, next_token_generation = [None], [None]
|
|
out = {"output": outputs, "mode": mode, 'message': f"{e}", "input": prompt, 'random_seed': 138}
|
|
|
|
return out
|
|
|
|
class MMEndpointHandler:
|
|
def __init__(self, path="insilicomedicine/precious3-gpt-multi-modal", device='cuda:3'):
|
|
|
|
self.device = device
|
|
self.path = path
|
|
|
|
self.model = Custom_MPTForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16).to(self.device)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
|
|
self.model.config.pad_token_id = self.tokenizer.pad_token_id
|
|
self.model.config.bos_token_id = self.tokenizer.bos_token_id
|
|
self.model.config.eos_token_id = self.tokenizer.eos_token_id
|
|
unique_entities_p3 = pd.read_csv('https://huggingface.co/insilicomedicine/precious3-gpt/raw/main/all_entities_with_type.csv')
|
|
self.unique_compounds_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='compound'].entity.to_list()]
|
|
self.unique_genes_p3 = [i.strip() for i in unique_entities_p3[unique_entities_p3.type=='gene'].entity.to_list()]
|
|
|
|
self.emb_gpt_genes = pd.read_pickle('https://huggingface.co/insilicomedicine/precious3-gpt-multi-modal/resolve/main/multi-modal-data/emb_gpt_genes.pickle')
|
|
self.emb_hgt_genes = pd.read_pickle('https://huggingface.co/insilicomedicine/precious3-gpt-multi-modal/resolve/main/multi-modal-data/emb_hgt_genes.pickle')
|
|
|
|
|
|
def create_prompt(self, prompt_config):
|
|
|
|
prompt = "[BOS]"
|
|
|
|
multi_modal_prefix = '<modality0><modality1><modality2><modality3>'*3
|
|
|
|
for k, v in prompt_config.items():
|
|
if k=='instruction':
|
|
prompt+=f'<{v}>' if isinstance(v, str) else "".join([f'<{v_i}>' for v_i in v])
|
|
elif k=='up':
|
|
if v:
|
|
prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
|
elif k=='down':
|
|
if v:
|
|
prompt+=f'{multi_modal_prefix}<{k}>{v} </{k}>' if isinstance(v, str) else f'{multi_modal_prefix}<{k}>{" ".join(v)} </{k}>'
|
|
elif k=='age':
|
|
if isinstance(v, int):
|
|
if prompt_config['species'].strip() == 'human':
|
|
prompt+=f'<{k}_individ>{v} </{k}_individ>'
|
|
elif prompt_config['species'].strip() == 'macaque':
|
|
prompt+=f'<{k}_individ>Macaca-{int(v/20)} </{k}_individ>'
|
|
else:
|
|
if v:
|
|
prompt+=f'<{k}>{v.strip()} </{k}>' if isinstance(v, str) else f'<{k}>{" ".join(v)} </{k}>'
|
|
else:
|
|
prompt+=f'<{k}></{k}>'
|
|
return prompt
|
|
|
|
def custom_generate(self,
|
|
input_ids,
|
|
acc_embs_up_kg_mean,
|
|
acc_embs_down_kg_mean,
|
|
acc_embs_up_txt_mean,
|
|
acc_embs_down_txt_mean,
|
|
device,
|
|
max_new_tokens,
|
|
mode,
|
|
temperature=0.8,
|
|
top_p=0.2, top_k=3550,
|
|
n_next_tokens=50, num_return_sequences=1, random_seed=138):
|
|
|
|
torch.manual_seed(random_seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modality0_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_kg_mean), 0).to(device) if isinstance(acc_embs_up_kg_mean, np.ndarray) else None
|
|
modality1_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_kg_mean), 0).to(device) if isinstance(acc_embs_down_kg_mean, np.ndarray) else None
|
|
modality2_emb = torch.unsqueeze(torch.from_numpy(acc_embs_up_txt_mean), 0).to(device) if isinstance(acc_embs_up_txt_mean, np.ndarray) else None
|
|
modality3_emb = torch.unsqueeze(torch.from_numpy(acc_embs_down_txt_mean), 0).to(device) if isinstance(acc_embs_down_txt_mean, np.ndarray) else None
|
|
|
|
|
|
|
|
outputs = []
|
|
next_token_compounds = []
|
|
next_token_up_genes = []
|
|
next_token_down_genes = []
|
|
|
|
for _ in range(num_return_sequences):
|
|
start_time = time.time()
|
|
generated_sequence = []
|
|
current_token = input_ids.clone()
|
|
|
|
for _ in range(max_new_tokens):
|
|
|
|
logits = self.model.forward(
|
|
input_ids=current_token,
|
|
modality0_emb=modality0_emb,
|
|
modality0_token_id=self.tokenizer.encode('<modality0>')[0],
|
|
modality1_emb=modality1_emb,
|
|
modality1_token_id=self.tokenizer.encode('<modality1>')[0],
|
|
modality2_emb=modality2_emb,
|
|
modality2_token_id=self.tokenizer.encode('<modality2>')[0],
|
|
modality3_emb=modality3_emb,
|
|
modality3_token_id=self.tokenizer.encode('<modality3>')[0],
|
|
)[0]
|
|
|
|
|
|
if temperature != 1.0:
|
|
logits = logits / temperature
|
|
|
|
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
|
sorted_indices_to_remove = cumulative_probs > top_p
|
|
|
|
if top_k > 0:
|
|
sorted_indices_to_remove[..., top_k:] = 1
|
|
|
|
|
|
inf_tensor = torch.tensor(float("-inf")).type(torch.bfloat16).to(logits.device)
|
|
|
|
logits = logits.where(sorted_indices_to_remove, inf_tensor)
|
|
|
|
|
|
|
|
if current_token[0][-1] == self.tokenizer.encode('<drug>')[0] and len(next_token_compounds)==0:
|
|
next_token_compounds.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
|
|
|
|
|
|
if current_token[0][-1] == self.tokenizer.encode('<up>')[0] and len(next_token_up_genes)==0:
|
|
next_token_up_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
|
|
|
|
|
|
if current_token[0][-1] == self.tokenizer.encode('<down>')[0] and len(next_token_down_genes)==0:
|
|
next_token_down_genes.append(torch.topk(torch.softmax(logits, dim=-1)[0][len(current_token[0])-1, :].flatten(), n_next_tokens).indices)
|
|
|
|
next_token = torch.multinomial(torch.softmax(logits, dim=-1)[0], num_samples=1)[len(current_token[0])-1, :].unsqueeze(0)
|
|
|
|
|
|
|
|
generated_sequence.append(next_token.item())
|
|
|
|
|
|
if next_token == self.tokenizer.eos_token_id:
|
|
break
|
|
|
|
|
|
current_token = torch.cat((current_token, next_token), dim=-1)
|
|
print(time.time()-start_time)
|
|
outputs.append(generated_sequence)
|
|
|
|
|
|
processed_outputs = {"up": [], "down": []}
|
|
if mode in ['meta2diff', 'meta2diff2compound']:
|
|
predicted_up_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_up_genes]
|
|
predicted_up_genes = []
|
|
for j in predicted_up_genes_tokens:
|
|
generated_up_sample = [i.strip() for i in j]
|
|
predicted_up_genes.append(sorted(set(generated_up_sample) & set(self.unique_genes_p3), key = generated_up_sample.index))
|
|
processed_outputs['up'] = predicted_up_genes
|
|
|
|
predicted_down_genes_tokens = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_down_genes]
|
|
predicted_down_genes = []
|
|
for j in predicted_down_genes_tokens:
|
|
generated_down_sample = [i.strip() for i in j]
|
|
predicted_down_genes.append(sorted(set(generated_down_sample) & set(self.unique_genes_p3), key = generated_down_sample.index))
|
|
processed_outputs['down'] = predicted_down_genes
|
|
|
|
else:
|
|
processed_outputs = outputs
|
|
|
|
predicted_compounds_ids = [self.tokenizer.convert_ids_to_tokens(j) for j in next_token_compounds]
|
|
predicted_compounds = []
|
|
for j in predicted_compounds_ids:
|
|
predicted_compounds.append([i.strip() for i in j])
|
|
|
|
return processed_outputs, predicted_compounds, random_seed
|
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, str]:
|
|
"""
|
|
Args:
|
|
data (:dict:):
|
|
The payload with the text prompt and generation parameters.
|
|
"""
|
|
data = data.copy()
|
|
parameters = data.pop("parameters", None)
|
|
config_data = data.pop("inputs", None)
|
|
mode = data.pop('mode', 'Not specified')
|
|
|
|
prompt = self.create_prompt(config_data)
|
|
if mode != "diff2compound":
|
|
prompt+="<up>"
|
|
|
|
inputs = self.tokenizer(prompt, return_tensors="pt")
|
|
input_ids = inputs["input_ids"].to(self.device)
|
|
|
|
max_new_tokens = self.model.config.max_seq_len - len(input_ids[0])
|
|
try:
|
|
if set(["up", "down"]) & set(config_data.keys()):
|
|
acc_embs_up1 = []
|
|
acc_embs_up2 = []
|
|
for gs in config_data['up']:
|
|
try:
|
|
acc_embs_up1.append(self.emb_hgt_genes[self.emb_hgt_genes.gene_symbol==gs].embs.values[0])
|
|
acc_embs_up2.append(self.emb_gpt_genes[self.emb_gpt_genes.gene_symbol==gs].embs.values[0])
|
|
except Exception as e:
|
|
pass
|
|
acc_embs_up1_mean = np.array(acc_embs_up1).mean(0) if acc_embs_up1 else None
|
|
acc_embs_up2_mean = np.array(acc_embs_up2).mean(0) if acc_embs_up2 else None
|
|
|
|
acc_embs_down1 = []
|
|
acc_embs_down2 = []
|
|
for gs in config_data['down']:
|
|
try:
|
|
acc_embs_down1.append(self.emb_hgt_genes[self.emb_hgt_genes.gene_symbol==gs].embs.values[0])
|
|
acc_embs_down2.append(self.emb_gpt_genes[self.emb_gpt_genes.gene_symbol==gs].embs.values[0])
|
|
except Exception as e:
|
|
pass
|
|
acc_embs_down1_mean = np.array(acc_embs_down1).mean(0) if acc_embs_down1 else None
|
|
acc_embs_down2_mean = np.array(acc_embs_down2).mean(0) if acc_embs_down2 else None
|
|
else:
|
|
acc_embs_up1_mean, acc_embs_up2_mean, acc_embs_down1_mean, acc_embs_down2_mean = None, None, None, None
|
|
|
|
generated_sequence, raw_next_token_generation, out_seed = self.custom_generate(input_ids = input_ids,
|
|
acc_embs_up_kg_mean=acc_embs_up1_mean,
|
|
acc_embs_down_kg_mean=acc_embs_down1_mean,
|
|
acc_embs_up_txt_mean=acc_embs_up2_mean,
|
|
acc_embs_down_txt_mean=acc_embs_down2_mean, max_new_tokens=max_new_tokens, mode=mode,
|
|
device=self.device, **parameters)
|
|
next_token_generation = [sorted(set(i) & set(self.unique_compounds_p3), key = i.index) for i in raw_next_token_generation]
|
|
|
|
if mode == "meta2diff":
|
|
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
|
|
out = {"output": outputs, "mode": mode, "message": "Done!", "input": prompt, 'random_seed': out_seed}
|
|
elif mode == "meta2diff2compound":
|
|
outputs = {"up": generated_sequence['up'], "down": generated_sequence['down']}
|
|
out = {
|
|
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode,
|
|
"message": "Done!", "input": prompt, 'random_seed': out_seed}
|
|
elif mode == "diff2compound":
|
|
outputs = generated_sequence
|
|
out = {
|
|
"output": outputs, "compounds": next_token_generation, "raw_output": raw_next_token_generation, "mode": mode,
|
|
"message": "Done!", "input": prompt, 'random_seed': out_seed}
|
|
else:
|
|
out = {"message": f"Specify one of the following modes: meta2diff, meta2diff2compound, diff2compound. Your mode is: {mode}"}
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
outputs, next_token_generation = [None], [None]
|
|
out = {"output": outputs, "mode": mode, 'message': f"{e}", "input": prompt, 'random_seed': 138}
|
|
|
|
return out
|
|
|
|
def main():
|
|
pass
|
|
|
|
if __name__=="__main__":
|
|
main() |