|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: sentence-transformers |
|
datasets: |
|
- davanstrien/similarity-dataset-sc2-8b |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:n<1K |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: microsoft/mpnet-base |
|
metrics: |
|
- cosine_accuracy |
|
- dot_accuracy |
|
- manhattan_accuracy |
|
- euclidean_accuracy |
|
- max_accuracy |
|
widget: |
|
- source_sentence: Write a Python function that counts the number of even numbers |
|
in a given list of integers or floats |
|
sentences: |
|
- Write a Python function that returns the number of even numbers in a list. |
|
- Create a Python function that adds up all the numbers in a given list. The function |
|
should support lists containing only positive integers. |
|
- Write a Python function that converts a JSON string into a Python dictionary using |
|
the json module and returns it. |
|
- source_sentence: Develop a Python function to validate whether a given string represents |
|
a valid IPv4 address or not. |
|
sentences: |
|
- Create a Python function to validate a string `s` as an IPv4 address. The function |
|
should return `True` if `s` is a valid IPv4 address, and `False` otherwise. |
|
- Write a Python function to find the key with the highest value in a dictionary. |
|
The function should return the value of the key if it exists |
|
- Write a Python function that, given a dictionary `d` and an integer `k`, returns |
|
the sum of the values of the first `k` keys in `d`. |
|
- source_sentence: Write a Python function to create a list of numbers with exactly |
|
one even number and n-1 odd numbers |
|
sentences: |
|
- Write a Python function that returns the number of even numbers in a list. |
|
- Write a Python function that recursively traverses a given folder structure and |
|
returns the absolute path of all files that end with ".txt". |
|
- Write a Python decorator function that overrides the docstring of the decorated |
|
function, and stores the old docstring and other metadata in a `_doc_metadata` |
|
attribute of the function. |
|
- source_sentence: 'Implement a Python function that prints the first character of |
|
a string using its indexing feature. ' |
|
sentences: |
|
- Write a Python function that takes a string as a parameter and returns the first |
|
character of the string. |
|
- Write a Python function that checks if the bit at position `bit` is set in the |
|
given `integer`. This function should return a boolean value. |
|
- 'Write a Python function `floor_division(x: int, y: int) -> int` that divides |
|
two integers `x` and `y` and returns the largest whole number less than or equal |
|
to the result.' |
|
- source_sentence: Write a Python function that takes a MIDI note number and returns |
|
the corresponding piano key number. |
|
sentences: |
|
- Create a Python function that translates MIDI note numbers into piano key numbers, |
|
facilitating music generation. |
|
- Write a Python function that accepts a dictionary and returns a set of distinct |
|
values. If a key maps to an empty list, return an empty set. |
|
- Write a Python function `join_strings_with_comma(lst)` that takes a list of strings |
|
and returns a single string with all the strings from the list, separated by commas. |
|
pipeline_tag: sentence-similarity |
|
co2_eq_emissions: |
|
emissions: 2.213004168952992 |
|
energy_consumed: 0.006336878829164133 |
|
source: codecarbon |
|
training_type: fine-tuning |
|
on_cloud: false |
|
cpu_model: Intel(R) Xeon(R) CPU @ 2.20GHz |
|
ram_total_size: 62.804237365722656 |
|
hours_used: 0.049 |
|
hardware_used: 1 x NVIDIA L4 |
|
model-index: |
|
- name: MPNet base trained on AllNLI triplets |
|
results: |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: code similarity dev |
|
type: code-similarity-dev |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.934010152284264 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.07106598984771574 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.934010152284264 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.9390862944162437 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.9390862944162437 |
|
name: Max Accuracy |
|
- task: |
|
type: triplet |
|
name: Triplet |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy |
|
value: 0.934010152284264 |
|
name: Cosine Accuracy |
|
- type: dot_accuracy |
|
value: 0.07106598984771574 |
|
name: Dot Accuracy |
|
- type: manhattan_accuracy |
|
value: 0.934010152284264 |
|
name: Manhattan Accuracy |
|
- type: euclidean_accuracy |
|
value: 0.9390862944162437 |
|
name: Euclidean Accuracy |
|
- type: max_accuracy |
|
value: 0.9390862944162437 |
|
name: Max Accuracy |
|
--- |
|
|
|
# MPNet base trained on AllNLI triplets |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("davanstrien/code-prompt-similarity-model") |
|
# Run inference |
|
sentences = [ |
|
'Write a Python function that takes a MIDI note number and returns the corresponding piano key number.', |
|
'Create a Python function that translates MIDI note numbers into piano key numbers, facilitating music generation.', |
|
'Write a Python function that accepts a dictionary and returns a set of distinct values. If a key maps to an empty list, return an empty set.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Triplet |
|
* Dataset: `code-similarity-dev` |
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy | 0.934 | |
|
| dot_accuracy | 0.0711 | |
|
| manhattan_accuracy | 0.934 | |
|
| euclidean_accuracy | 0.9391 | |
|
| **max_accuracy** | **0.9391** | |
|
|
|
#### Triplet |
|
|
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) |
|
|
|
| Metric | Value | |
|
|:-------------------|:-----------| |
|
| cosine_accuracy | 0.934 | |
|
| dot_accuracy | 0.0711 | |
|
| manhattan_accuracy | 0.934 | |
|
| euclidean_accuracy | 0.9391 | |
|
| **max_accuracy** | **0.9391** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 10 |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | code-similarity-dev_max_accuracy | max_accuracy | |
|
|:-----:|:----:|:-------------:|:------:|:--------------------------------:|:------------:| |
|
| 0 | 0 | - | - | 0.8680 | - | |
|
| 2.0 | 100 | 0.6379 | 0.1845 | 0.9340 | - | |
|
| 4.0 | 200 | 0.0399 | 0.1577 | 0.9543 | - | |
|
| 6.0 | 300 | 0.0059 | 0.1577 | 0.9543 | - | |
|
| 8.0 | 400 | 0.0018 | 0.1662 | 0.9492 | - | |
|
| 10.0 | 500 | 0.0009 | 0.1643 | 0.9391 | 0.9391 | |
|
|
|
|
|
### Environmental Impact |
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). |
|
- **Energy Consumed**: 0.006 kWh |
|
- **Carbon Emitted**: 0.002 kg of CO2 |
|
- **Hours Used**: 0.049 hours |
|
|
|
### Training Hardware |
|
- **On Cloud**: No |
|
- **GPU Model**: 1 x NVIDIA L4 |
|
- **CPU Model**: Intel(R) Xeon(R) CPU @ 2.20GHz |
|
- **RAM Size**: 62.80 GB |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |