document-spoof

This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1105
  • Accuracy: 0.9767

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9524 5 0.5211 0.8837
No log 1.9048 10 0.2271 0.8837
0.545 2.8571 15 0.0975 0.9884
0.545 4.0 21 0.1020 0.9767
0.545 4.9524 26 0.3087 0.9535
0.472 5.9048 31 0.3385 0.8023
0.472 6.8571 36 0.2358 0.8605
0.472 8.0 42 0.3675 0.8605
0.3762 8.9524 47 0.1460 0.9535
0.3762 9.9048 52 0.6158 0.8140
0.3762 10.8571 57 0.3228 0.9186
0.1586 12.0 63 0.0248 0.9884
0.1586 12.9524 68 0.0639 0.9651
0.1586 13.9048 73 0.5674 0.8488
0.1159 14.8571 78 0.0291 0.9884
0.1159 16.0 84 0.0539 0.9884
0.1159 16.9524 89 0.0772 0.9767
0.0366 17.9048 94 0.0031 1.0
0.0366 18.8571 99 0.1506 0.9535
0.0179 20.0 105 0.0007 1.0
0.0179 20.9524 110 0.1427 0.9535
0.0179 21.9048 115 0.2299 0.9419
0.0036 22.8571 120 0.1373 0.9767
0.0036 23.8095 125 0.1105 0.9767

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
47
Safetensors
Model size
87.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for habibi26/document-spoof

Finetuned
(55)
this model

Evaluation results