document-spoof / README.md
habibi26's picture
Model save
90ed2ad verified
metadata
base_model: openai/clip-vit-base-patch32
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: document-spoof
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9767441860465116

document-spoof

This model is a fine-tuned version of openai/clip-vit-base-patch32 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1105
  • Accuracy: 0.9767

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9524 5 0.5211 0.8837
No log 1.9048 10 0.2271 0.8837
0.545 2.8571 15 0.0975 0.9884
0.545 4.0 21 0.1020 0.9767
0.545 4.9524 26 0.3087 0.9535
0.472 5.9048 31 0.3385 0.8023
0.472 6.8571 36 0.2358 0.8605
0.472 8.0 42 0.3675 0.8605
0.3762 8.9524 47 0.1460 0.9535
0.3762 9.9048 52 0.6158 0.8140
0.3762 10.8571 57 0.3228 0.9186
0.1586 12.0 63 0.0248 0.9884
0.1586 12.9524 68 0.0639 0.9651
0.1586 13.9048 73 0.5674 0.8488
0.1159 14.8571 78 0.0291 0.9884
0.1159 16.0 84 0.0539 0.9884
0.1159 16.9524 89 0.0772 0.9767
0.0366 17.9048 94 0.0031 1.0
0.0366 18.8571 99 0.1506 0.9535
0.0179 20.0 105 0.0007 1.0
0.0179 20.9524 110 0.1427 0.9535
0.0179 21.9048 115 0.2299 0.9419
0.0036 22.8571 120 0.1373 0.9767
0.0036 23.8095 125 0.1105 0.9767

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1