|
--- |
|
base_model: openai/clip-vit-base-patch32 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: ktp-kk-crop |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 1.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ktp-kk-crop |
|
|
|
This model is a fine-tuned version of [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0312 |
|
- Accuracy: 1.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:| |
|
| No log | 0.8696 | 5 | 0.5871 | 0.7 | |
|
| No log | 1.9130 | 11 | 0.0729 | 0.9667 | |
|
| 0.7676 | 2.9565 | 17 | 0.1986 | 0.9 | |
|
| 0.7676 | 4.0 | 23 | 0.1610 | 0.9 | |
|
| 0.7676 | 4.8696 | 28 | 0.0644 | 0.9667 | |
|
| 0.2441 | 5.9130 | 34 | 0.2016 | 0.9 | |
|
| 0.2441 | 6.9565 | 40 | 0.1530 | 0.9 | |
|
| 0.1751 | 8.0 | 46 | 0.0412 | 1.0 | |
|
| 0.1751 | 8.8696 | 51 | 0.0301 | 1.0 | |
|
| 0.1751 | 9.9130 | 57 | 0.0495 | 0.9667 | |
|
| 0.1156 | 10.9565 | 63 | 0.0283 | 1.0 | |
|
| 0.1156 | 12.0 | 69 | 0.0214 | 1.0 | |
|
| 0.1156 | 12.8696 | 74 | 0.1014 | 0.9667 | |
|
| 0.1238 | 13.9130 | 80 | 0.0538 | 1.0 | |
|
| 0.1238 | 14.9565 | 86 | 0.0477 | 1.0 | |
|
| 0.1064 | 16.0 | 92 | 0.0105 | 1.0 | |
|
| 0.1064 | 16.8696 | 97 | 0.0389 | 0.9667 | |
|
| 0.1064 | 17.9130 | 103 | 0.0120 | 1.0 | |
|
| 0.0862 | 18.9565 | 109 | 0.0183 | 1.0 | |
|
| 0.0862 | 20.0 | 115 | 0.0259 | 1.0 | |
|
| 0.0345 | 20.8696 | 120 | 0.0272 | 1.0 | |
|
| 0.0345 | 21.7391 | 125 | 0.0312 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|