leaderboard-pr-bot's picture
Adding Evaluation Results
7a7601d verified
|
raw
history blame
7.25 kB
metadata
language:
  - en
license: apache-2.0
library_name: transformers
tags:
  - chat
  - abliterated
  - uncensored
base_model: Qwen/Qwen2.5-7B-Instruct
license_link: >-
  https://huggingface.co/huihui-ai/Qwen2.5-7B-Instruct-abliterated/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
  - name: Qwen2.5-7B-Instruct-abliterated
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 75.46
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/Qwen2.5-7B-Instruct-abliterated
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 32.89
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/Qwen2.5-7B-Instruct-abliterated
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/Qwen2.5-7B-Instruct-abliterated
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 8.72
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/Qwen2.5-7B-Instruct-abliterated
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 7.48
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/Qwen2.5-7B-Instruct-abliterated
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 35.33
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=huihui-ai/Qwen2.5-7B-Instruct-abliterated
          name: Open LLM Leaderboard

huihui-ai/Qwen2.5-7B-Instruct-abliterated

This is an uncensored version of Qwen/Qwen2.5-7B-Instruct created with abliteration (see this article to know more about it).

Special thanks to @FailSpy for the original code and technique. Please follow him if you're interested in abliterated models.

Important Note There's a new version available, please try using the new version Qwen2.5-7B-Instruct-abliterated-v2.

Usage

You can use this model in your applications by loading it with Hugging Face's transformers library:

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the model and tokenizer
model_name = "huihui-ai/Qwen2.5-7B-Instruct-abliterated"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Initialize conversation context
initial_messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}
]
messages = initial_messages.copy()  # Copy the initial conversation context

# Enter conversation loop
while True:
    # Get user input
    user_input = input("User: ").strip()  # Strip leading and trailing spaces

    # If the user types '/exit', end the conversation
    if user_input.lower() == "/exit":
        print("Exiting chat.")
        break

    # If the user types '/clean', reset the conversation context
    if user_input.lower() == "/clean":
        messages = initial_messages.copy()  # Reset conversation context
        print("Chat history cleared. Starting a new conversation.")
        continue

    # If input is empty, prompt the user and continue
    if not user_input:
        print("Input cannot be empty. Please enter something.")
        continue

    # Add user input to the conversation
    messages.append({"role": "user", "content": user_input})

    # Build the chat template
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )

    # Tokenize input and prepare it for the model
    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

    # Generate a response from the model
    generated_ids = model.generate(
        **model_inputs,
        max_new_tokens=8192
    )

    # Extract model output, removing special tokens
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

    # Add the model's response to the conversation
    messages.append({"role": "assistant", "content": response})

    # Print the model's response
    print(f"Qwen: {response}")

Evaluations

The following data has been re-evaluated and calculated as the average for each test.

Benchmark Qwen2.5-7B-Instruct Qwen2.5-7B-Instruct-abliterated
IF_Eval 76.44 76.49
MMLU Pro 43.12 41.71
TruthfulQA 62.46 64.92
BBH 53.92 52.77
GPQA 31.91 31.97

The script used for evaluation can be found inside this repository under /eval.sh, or click here

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 26.65
IFEval (0-Shot) 75.46
BBH (3-Shot) 32.89
MATH Lvl 5 (4-Shot) 0.00
GPQA (0-shot) 8.72
MuSR (0-shot) 7.48
MMLU-PRO (5-shot) 35.33