|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: wav2vec2_capstone |
|
results: [] |
|
datasets: |
|
- mozilla-foundation/common_voice_16_1 |
|
language: |
|
- en |
|
- ca |
|
- rw |
|
- be |
|
- eo |
|
- de |
|
- fr |
|
- ka |
|
- es |
|
- lg |
|
- sw |
|
- fa |
|
- it |
|
- mh |
|
- zh |
|
- ba |
|
- ta |
|
- ru |
|
- eu |
|
- th |
|
- pt |
|
- pl |
|
- ja |
|
pipeline_tag: audio-classification |
|
--- |
|
|
|
# WAV2VEC2_CAPSTONE_MODEL |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on a subset of the common_voice_16_1 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3952 |
|
- Accuracy: 0.9098 |
|
- F1 score: 0.9097 |
|
## Model description |
|
More information needed |
|
## Intended uses & limitations |
|
More information needed |
|
## Training and evaluation data |
|
More information needed |
|
## Training procedure |
|
### Training hyperparameters |
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 10 |
|
- total_train_batch_size: 80 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
### Training results |
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| |
|
| 0.9339 | 1.0 | 776 | 1.4214 | 0.7162 | 0.7094 | |
|
| 0.5663 | 2.0 | 1552 | 1.0182 | 0.8318 | 0.8277 | |
|
| 0.4408 | 3.0 | 2328 | 0.6117 | 0.8795 | 0.8784 | |
|
| 0.3521 | 4.0 | 3105 | 0.5092 | 0.8998 | 0.9001 | |
|
| 0.2305 | 5.0 | 3881 | 0.3896 | 0.9004 | 0.9013 | |
|
| 0.1219 | 6.0 | 4657 | 0.3096 | 0.9196 | 0.9194 | |
|
| 0.0672 | 6.99 | 3591 | 0.3952 | 0.9098 | 0.9097 | |
|
### Framework versions |
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |