snbhanja's picture
End of training
e252180 verified
metadata
library_name: transformers
license: other
base_model: facebook/mask2former-swin-tiny-coco-instance
tags:
  - image-segmentation
  - instance-segmentation
  - vision
  - generated_from_trainer
model-index:
  - name: finetune-instance-segmentation-ade20k-mini-mask2former
    results: []

finetune-instance-segmentation-ade20k-mini-mask2former

This model is a fine-tuned version of facebook/mask2former-swin-tiny-coco-instance on the qubvel-hf/ade20k-mini dataset. It achieves the following results on the evaluation set:

  • Loss: 31.0067
  • Map: 0.2061
  • Map 50: 0.4076
  • Map 75: 0.1946
  • Map Small: 0.1368
  • Map Medium: 0.623
  • Map Large: 0.82
  • Mar 1: 0.0921
  • Mar 10: 0.2488
  • Mar 100: 0.2856
  • Mar Small: 0.2105
  • Mar Medium: 0.7164
  • Mar Large: 0.8705
  • Map Person: 0.1413
  • Mar 100 Person: 0.2035
  • Map Car: 0.2709
  • Mar 100 Car: 0.3678

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 2.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Person Mar 100 Person Map Car Mar 100 Car
37.3934 1.0 100 33.6332 0.1981 0.3956 0.1799 0.1285 0.6173 0.7992 0.0896 0.2453 0.2821 0.2074 0.7135 0.8354 0.1349 0.2001 0.2613 0.3641
29.0441 2.0 200 31.0067 0.2061 0.4076 0.1946 0.1368 0.623 0.82 0.0921 0.2488 0.2856 0.2105 0.7164 0.8705 0.1413 0.2035 0.2709 0.3678

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.21.0