Spaces:
Sleeping
Sleeping
from torchvision.models._api import WeightsEnum | |
from torch.hub import load_state_dict_from_url | |
def get_state_dict(self, *args, **kwargs): | |
kwargs.pop("check_hash") | |
return load_state_dict_from_url(self.url, *args, **kwargs) | |
WeightsEnum.get_state_dict = get_state_dict | |
import torch | |
import torchvision | |
from torch import nn | |
def create_effnetb2_model(num_classes: int = 3, | |
seed: int = 42): | |
# 1, 2, 3 Create EffNetB2 pretrained weights, transforms and model | |
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT | |
transforms = weights.transforms() | |
model = torchvision.models.efficientnet_b2(weights=weights) | |
# 4. Freeze all layers in the base model | |
for param in model.parameters(): | |
param.requires_grad = False | |
# 5. Change classifier head with random seed for reproducibility | |
torch.manual_seed(seed) | |
model.classifier = nn.Sequential( | |
nn.Dropout(p= .3, inplace=True), | |
nn.Linear(in_features=1408, out_features=num_classes, bias=True) | |
) | |
return model, transforms | |