|
--- |
|
language: en |
|
license: mit |
|
library_name: diffusers |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
datasets: yuntian-deng/im2latex-100k |
|
metrics: [] |
|
--- |
|
|
|
# latex2im_ss_finetunegptneo |
|
|
|
## Model description |
|
|
|
Details of this model can be found in [our paper on markup-to-image generation](https://arxiv.org/pdf/2210.05147.pdf). Our code is built on top of HuggingFace [diffusers](https://github.com/huggingface/diffusers) and [transformers](https://github.com/huggingface/transformers). |
|
|
|
## Online Demo: [https://huggingface.co/spaces/yuntian-deng/latex2im](https://huggingface.co/spaces/yuntian-deng/latex2im). |
|
|
|
## Model Details |
|
- **Developed by:** Yuntian Deng, Noriyuki Kojima, Alexander M. Rush |
|
- **Model type:** Diffusion-based text-to-image generation model |
|
- **Language(s):** English |
|
- **License:** [MIT](https://github.com/da03/markup2im/blob/main/LICENSE). |
|
- **Model Description:** This is a model that can be used to generate math formula images based on LaTeX prompts. |
|
- **Resources for more information:** [GitHub Repository](https://github.com/da03/markup2im), [Paper](https://arxiv.org/abs/2210.05147). |
|
- **Cite as:** |
|
|
|
@inproceedings{ |
|
deng2023markuptoimage, |
|
title={Markup-to-Image Diffusion Models with Scheduled Sampling}, |
|
author={Yuntian Deng and Noriyuki Kojima and Alexander M Rush}, |
|
booktitle={The Eleventh International Conference on Learning Representations }, |
|
year={2023}, |
|
url={https://openreview.net/forum?id=81VJDmOE2ol} |
|
} |
|
|