clite-500m / README.md
Fizzarolli's picture
Upload folder using huggingface_hub
5df3bc6 verified
|
raw
history blame
5.44 kB
metadata
license: apache-2.0
base_model: h2oai/h2o-danube3-500m-base
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: clite7-500m-test-ckpts
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

# Weights and Biases logging config
wandb_project: clite
wandb_entity:
wandb_watch:
wandb_name: v7
wandb_log_model:

# Model architecture config
base_model: h2oai/h2o-danube3-500m-base
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: anthropic

# Hugging Face saving config
hub_model_id:
hub_strategy:
push_dataset_to_hub:
hf_use_auth_token:

# Model checkpointing config
output_dir: ./lora-out
resume_from_checkpoint:
save_steps:
saves_per_epoch: 5
save_safetensors: true
save_total_limit: 2

# Mixed precision training config
bf16: true
fp16: false
tf32: false

# Model loading config
load_in_8bit: false
load_in_4bit: false
strict: false

# Sequence config
sequence_len: 8192
s2_attention: false
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
train_on_inputs: true
group_by_length: false

# Dataset config
datasets:
    - path: kalomaze/Opus_Instruct_3k
      type: chat_template
val_set_size: 0.1
evaluation_strategy:
eval_steps:
evals_per_epoch: 10
test_datasets:
dataset_prepared_path: ./last-preped-dataset
shuffle_merged_datasets: true

# Training hyperparameters
num_epochs: 3
gradient_accumulation_steps: 2
micro_batch_size: 8
eval_batch_size: 8
warmup_steps: 10
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00004
cosine_min_lr_ratio: 0.1
weight_decay: 0.1
max_grad_norm: 1
logging_steps: 1

# Model optimization
gradient_checkpointing: unsloth
xformers_attention: false
flash_attention: true
sdp_attention: false
unsloth_cross_entropy_loss: false
unsloth_lora_mlp: false
unsloth_lora_qkv: false
unsloth_lora_o: false

# Loss monitoring config
early_stopping_patience: false
loss_watchdog_threshold: 100.0
loss_watchdog_patience: 3

# Debug config
debug: true
seed: 02496

# DeepSpeed and FSDP config
deepspeed:
fsdp:
fsdp_config:

# Token config
special_tokens:
tokens: # these are delimiters
  - "<EOT>"

# Checkpoint backing up
hub_model_id: Fizzarolli/clite7-500m-test-ckpts
hub_strategy: all_checkpoints

Visualize in Weights & Biases

clite7-500m-test-ckpts

This model is a fine-tuned version of h2oai/h2o-danube3-500m-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3765

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 2496
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
2.9517 0.0952 1 3.7616
2.9796 0.1905 2 3.6462
2.9632 0.2857 3 3.3357
2.6639 0.3810 4 3.0408
2.5048 0.4762 5 2.7322
2.4911 0.5714 6 2.5094
2.1291 0.6667 7 2.3554
4.8452 0.7619 8 1.6418
1.6902 0.8571 9 1.6067
1.6166 0.9524 10 1.5581
1.5985 1.0476 11 1.5162
1.5001 1.0476 12 1.4847
1.4679 1.1429 13 1.4601
1.4981 1.2381 14 1.4440
1.4864 1.3333 15 1.4293
1.4895 1.4286 16 1.4174
1.4653 1.5238 17 1.4061
1.4447 1.6190 18 1.3988
1.4492 1.7143 19 1.3937
1.4244 1.8095 20 1.3896
1.4319 1.9048 21 1.3858
1.4238 2.0 22 1.3830
1.4725 2.0952 23 1.3810
1.3862 2.0952 24 1.3794
1.3526 2.1905 25 1.3783
1.4134 2.2857 26 1.3776
1.3909 2.3810 27 1.3771
1.4016 2.4762 28 1.3769
1.3494 2.5714 29 1.3766
1.3783 2.6667 30 1.3765

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1