clite-500m / README.md
Fizzarolli's picture
Upload folder using huggingface_hub
5df3bc6 verified
|
raw
history blame
5.44 kB
---
license: apache-2.0
base_model: h2oai/h2o-danube3-500m-base
tags:
- axolotl
- generated_from_trainer
model-index:
- name: clite7-500m-test-ckpts
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
# Weights and Biases logging config
wandb_project: clite
wandb_entity:
wandb_watch:
wandb_name: v7
wandb_log_model:
# Model architecture config
base_model: h2oai/h2o-danube3-500m-base
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: anthropic
# Hugging Face saving config
hub_model_id:
hub_strategy:
push_dataset_to_hub:
hf_use_auth_token:
# Model checkpointing config
output_dir: ./lora-out
resume_from_checkpoint:
save_steps:
saves_per_epoch: 5
save_safetensors: true
save_total_limit: 2
# Mixed precision training config
bf16: true
fp16: false
tf32: false
# Model loading config
load_in_8bit: false
load_in_4bit: false
strict: false
# Sequence config
sequence_len: 8192
s2_attention: false
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
train_on_inputs: true
group_by_length: false
# Dataset config
datasets:
- path: kalomaze/Opus_Instruct_3k
type: chat_template
val_set_size: 0.1
evaluation_strategy:
eval_steps:
evals_per_epoch: 10
test_datasets:
dataset_prepared_path: ./last-preped-dataset
shuffle_merged_datasets: true
# Training hyperparameters
num_epochs: 3
gradient_accumulation_steps: 2
micro_batch_size: 8
eval_batch_size: 8
warmup_steps: 10
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.00004
cosine_min_lr_ratio: 0.1
weight_decay: 0.1
max_grad_norm: 1
logging_steps: 1
# Model optimization
gradient_checkpointing: unsloth
xformers_attention: false
flash_attention: true
sdp_attention: false
unsloth_cross_entropy_loss: false
unsloth_lora_mlp: false
unsloth_lora_qkv: false
unsloth_lora_o: false
# Loss monitoring config
early_stopping_patience: false
loss_watchdog_threshold: 100.0
loss_watchdog_patience: 3
# Debug config
debug: true
seed: 02496
# DeepSpeed and FSDP config
deepspeed:
fsdp:
fsdp_config:
# Token config
special_tokens:
tokens: # these are delimiters
- "<EOT>"
# Checkpoint backing up
hub_model_id: Fizzarolli/clite7-500m-test-ckpts
hub_strategy: all_checkpoints
```
</details><br>
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/ruthenic/clite/runs/diil6zl9)
# clite7-500m-test-ckpts
This model is a fine-tuned version of [h2oai/h2o-danube3-500m-base](https://huggingface.co/h2oai/h2o-danube3-500m-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3765
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 2496
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.9517 | 0.0952 | 1 | 3.7616 |
| 2.9796 | 0.1905 | 2 | 3.6462 |
| 2.9632 | 0.2857 | 3 | 3.3357 |
| 2.6639 | 0.3810 | 4 | 3.0408 |
| 2.5048 | 0.4762 | 5 | 2.7322 |
| 2.4911 | 0.5714 | 6 | 2.5094 |
| 2.1291 | 0.6667 | 7 | 2.3554 |
| 4.8452 | 0.7619 | 8 | 1.6418 |
| 1.6902 | 0.8571 | 9 | 1.6067 |
| 1.6166 | 0.9524 | 10 | 1.5581 |
| 1.5985 | 1.0476 | 11 | 1.5162 |
| 1.5001 | 1.0476 | 12 | 1.4847 |
| 1.4679 | 1.1429 | 13 | 1.4601 |
| 1.4981 | 1.2381 | 14 | 1.4440 |
| 1.4864 | 1.3333 | 15 | 1.4293 |
| 1.4895 | 1.4286 | 16 | 1.4174 |
| 1.4653 | 1.5238 | 17 | 1.4061 |
| 1.4447 | 1.6190 | 18 | 1.3988 |
| 1.4492 | 1.7143 | 19 | 1.3937 |
| 1.4244 | 1.8095 | 20 | 1.3896 |
| 1.4319 | 1.9048 | 21 | 1.3858 |
| 1.4238 | 2.0 | 22 | 1.3830 |
| 1.4725 | 2.0952 | 23 | 1.3810 |
| 1.3862 | 2.0952 | 24 | 1.3794 |
| 1.3526 | 2.1905 | 25 | 1.3783 |
| 1.4134 | 2.2857 | 26 | 1.3776 |
| 1.3909 | 2.3810 | 27 | 1.3771 |
| 1.4016 | 2.4762 | 28 | 1.3769 |
| 1.3494 | 2.5714 | 29 | 1.3766 |
| 1.3783 | 2.6667 | 30 | 1.3765 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1